Exploring What Oil Spills Do to Fresh Water
You may be surprised to learn that we actually know very little about what happens to fresh water systems when an oil spill occurs. That’s why IISD Experimental Lakes Area is planning a large project to answer those very questions.
Keystone Pipeline. The Dakota Access Pipeline. The Trans-Alaska Pipeline System. North America has the largest network of energy pipelines in the world, and unfortunately periodic oil spills from pipelines do occur.
Even so, you may be surprised to learn that we actually know very little about what happens to freshwater systems when an oil spill occurs. Moreover, we know very little about how best to clean up those oil spills. A new large project, taking place at IISD Experimental Lakes Area in three stages, is setting out to answer those very questions.
Before we get into the research, let’s take a look at why oil spills could be a problem, how they could affect the surrounding environment and where we need to go from here.
What exactly is an oil spill?
Oil spills occur when oil being transported by truck, rail or pipeline unintentionally spills into the surrounding environment. In some cases, oil may end up in freshwater systems.
There are many types of oil. In North America, bitumen extracted from the Alberta oil sands is one of the most commonly transported types (by volume). Bitumen is too thick to be transported in pipelines, so it is diluted with other, lighter oils to allow it to flow more easily. The diluted bitumen is called “dilbit” and flows through many pipelines in North America.
Don’t we already know happens when oil enters fresh water?
Surprisingly, no.
Most existing research concentrates on the impact of oil spills on marine environments. In fact, leading and authoritative sources, such as the Royal Society of Canada and the National Academy of Sciences, have identified gaps in our knowledge regarding the impacts of oil spills on freshwater systems.
The implications of potential spills for freshwater systems and their surrounding environments remains uncertain.
And this is all the more surprising given the number of existing or proposed inland pipelines adjacent to freshwater systems. There are already approximately 840,000 km of oil and gas pipelines in Canada and 3.9 million km in the USA.
The implications of potential spills for freshwater systems and their surrounding environments remain uncertain. Because many methods for cleaning up oil spills were developed for the ocean, we also do not know which are most effective in freshwater systems.
We just don’t know enough.
What is happening at IISD Experimental Lakes Area to find out what oil spills do to fresh water?
Given the significant knowledge gaps, a groundbreaking project is taking place at IISD-ELA that will answer pressing questions about what happens when oil enters freshwater systems.
There are three stages of this research.
First, a pilot study using three small (2-m diameter) land-based microcosms has already been completed to examine the chemical and physical behaviour of dilbit in fresh water.
Oil is a complex mixture of chemicals whose nature changes with time in the environment. These changes can affect how easily it can be cleaned up (for example, does the oil remain floating or sink?) and its potential toxicity to freshwater wildlife. This early-stage study provided important preliminary information regarding these changes in fresh water that will help to guide the later phases of the research, which will begin in 2018.
The second stage is a field study. Researchers will use large enclosures (10-m diameter) placed in a lake to examine how diluted bitumen reacts in fresh water over longer periods of time. Researchers will also be directly testing changes in the oil’s toxicity to freshwater bugs, fish and amphibians.
The information from these first two studies will guide a third study, where researchers will examine the most effective methods of cleaning spilled oil from shorelines. Again, only small, contained model spills in an IISD-ELA lake will be used. This study will focus on the shoreline, which is most sensitive to oil and presents the biggest difficulty in terms of cleanup efforts.
Is it safe to study oil in an IISD-ELA lake?
IISD-ELA never embarks on any experiment without rigorous measures to protect the long-term health of the lakes. This includes a comprehensive contingency plan and a scientifically reviewed process to return the lake to the condition it was in before we started the research.
This oil research project is no exception and is going through a rigorous review process. All of the proposed model oil spills will be limited in volume and will be added into contained areas that are isolated from the rest of the lake. We will also install a series of absorbent booms around the isolated areas and at the lake outflow to double and triple protect against any leakages from the isolated areas.
As always, we are committed to removing leftover oil from the lake once the research is complete. A detailed plan to do that is an integral part of the study design as well.
IISD-ELA never embarks on any experiment without rigorous measures to protect the long-term health of the lakes.
What is IISD-ELA doing to ensure that our results are as useful as possible?
As scientists, we strive to approach our research objectively.
Our interest is in providing reliable results that can be used to inform better decision making around pipeline development and to develop more effective methods for cleaning up lakes after oil spills.
Throughout the project development stages, we have made every attempt to collaborate with those who might be affected by the research. IISD-ELA has sought input from First Nations and government departments, the oil production and transportation industries, regulators, universities and local community members.
For example, in September we held an Open House in Kenora (a small town in Ontario close to the research site) to discuss the project with citizens, explain the finer details and answer any questions.
Several studies are currently being pursued at the IISD-ELA to address public and regulatory concerns regarding potential environmental effects of oil spills and uncertainty regarding the best clean-up methods following a spill, especially for freshwater environments. One study, led by Drs. Jules Blais (University of Ottawa), Mark Hanson (University of Manitoba) and Diane Orihel (Queen’s University) will examine the ecological impacts of contained diluted bitumen model spills in a freshwater boreal lake. A companion study, led by Dr. Vince Palace (IISD-ELA) will compare the effectiveness of different methods for cleaning spilled oil form shorelines. Both studies are part of a large multidisciplinary program that includes participation from governments (ECCC, DFO, NRCan, OMECC, OMNRF), regulators (NEB), academic partners (Universities of Manitoba, Ottawa, Queen’s, INRS, Calgary, Saskatchewan, Mcgill) and industry (Canadian Association of Petroleum Producers (CAPP), Canadian Energy Pipelines Association (CEPA)). For more information, please contact Sumeep Bath at sbath@iisd.ca.
You might also be interested in
IISD Welcomes Draft Regulations for Oil and Gas Pollution Cap
A firm cap on emissions can provide certainty for industry to invest in decarbonization, while ensuring the sector is on a path to net-zero by 2050.
Canadians on the Hook for up to CAD 18.8 Billion in Ongoing Subsidies to the Trans Mountain Pipeline
Canadian taxpayers could end up contributing up to CAD 18.8 billion in subsidies to the Trans Mountain Pipeline if the federal government continues charging discounted transportation tolls to the oil industry, according to a new IISD report.
For Nature-Based Solutions to Be Effective, We Need to Work with Indigenous Peoples and Local Communities
Nature-based solutions have been praised as a promising approach to tackling the twin crises of climate change and biodiversity loss. But some Indigenous Peoples and local communities are questioning the legitimacy of the concept and what it symbolizes. It is time to listen to what they have to say.
Global Dialogue on Border Carbon Adjustments
This report contributes to the global BCA discussion by summarizing country-level reports reflecting dialogues conducted in Brazil, Canada, Trinidad and Tobago, the United Kingdom, and Vietnam.